Adirondack Lake Assessment Program

Lake Colby 2006

Nine Years in the program
Cranberry Lake, Loon Lake, Oven Mountain Pond, Blue Mountain Lake, Silver Lake, Eagle Lake

Eight Years in the program
Little Long Lake, Gull Pond, Stony Creek Ponds, Thirteenth Lake, Eli Pond, Sagamore Lake

Seven Years in the program
Austin Pond, Osgood Pond, Middle Saranac Lake, White Lake, Trout Lake, Brandreth Lake

Six Years in the program
Hoel Pond, Great Sacandaga Lake, Balfour Lake, Tripp Lake, Sherman Lake, Wolf Lake, Twitchell Lake, Deer Lake, Arbutus Pond, Rich Lake, Catlin Lake, Pine Lake, Lake of the Pines, Pleasant Lake, Fish Creek Ponds, Rollins Pond, Hewitt Lake

Five Years in the program
Echo Pond, Spitfire Lake, Upper St. Regis, Lower St. Regis, Garnet Lake, Lens Lake, McRoire Lake, Snowshoe Pond, Lake Ozonia

Four Years in the program
Lake Flower, Raquette Lake, Follensby Clear Pond, Second Pond, Lake Colby, Kiwassa Lake, Canada Lake

Three Years in the program
Indian Lake, Loon (Chester) Lake, Big Moose Lake, Schroon Lake, Lake Eaton, Chazy Lake

Second Year in the program
Dug Mountain Pond, Seventh Lake, Abanakee Lake, Moss Lake, Mountain View Lake, Indian Lake

First Year in the Program
Sylvia Lake, Rondaxe Lake, Fern Lake.
Introduction

The Adirondack Lake Assessment Program is a volunteer monitoring program established by the Residents' Committee to Protect the Adirondacks (RCPA) and the Adirondack Watershed Institute (AWI). The program is now in its' ninth year and continues to grow. The program was established to help develop a current database of water quality in Adirondack lakes and ponds. There were 70 participating lakes in the program in year 2006.

Methodology

Each month participants (trained by AWI staff) measured transparency with a secchi disk and collected a 2-meter composite of lake water for chlorophyll-a analysis and a separate 2-meter composite for total phosphorus and other chemical analyses. The participants filtered the chlorophyll-a sample prior to storage. Both the chlorophyll-a filter and water chemistry samples were frozen for transport to the laboratory at Paul Smith’s College.

In addition to the volunteer samples, AWI staff sampled water quality parameters in most of the participating lakes as time and weather allowed. In most instances, a 2-meter composite of lake water was collected for chlorophyll-a analysis. Samples were also collected at depths of 1.5 meters from the surface (epilimnion) and within 1.5 meters of the bottom (hypolimnion) for chemical analysis. Once collected, samples were stored in a cooler and transported to the laboratory at Paul Smith’s College.

All samples were analyzed by AWI staff in the Paul Smith’s College laboratory using the methods detailed in Standard Methods for the Examination of Water and Wastewater, 20th edition (Greenberg, et al, 1999). Volunteer samples were analyzed for pH, alkalinity, conductivity, color, nitrate, chlorophyll-a and total phosphorus concentrations. Samples taken by AWI staff were analyzed for the same parameters, as well as for calcium, chloride, and aluminum concentrations.

Results Summary

Lake Colby was sampled three times by a volunteer in 2006. Samples were collected for the lake on the following dates: 5/10/06, 7/15/06, and 8/26/06. Results for 2006 are presented in Appendix A and will be discussed in the following sections. Results are presented as concentrations in milligrams per liter (mg/L) or its equivalent of parts per million (ppm) and micrograms per liter (µg/L) or its equivalent of parts per billion (ppb).

1 mg/L = 1 ppm; 1 µg/L = 1 ppb; 1 ppm = 1000 ppb.

Adirondack lakes are subject to the effects of acidic precipitation (i.e. snow, rain). A water body's susceptibility to acid producing ions is assessed by measuring pH, alkalinity, calcium concentrations, and the Calcite Saturation Index (CSI). These
parameters define both the acidity of the water and its buffering capacity. Based on the results of the 2006 Adirondack Lakes Assessment program, the acidity status of Lake Colby is considered to be satisfactory with no threat from further acidic inputs.

Limnologists, the scientists who study bodies of fresh water, classify lake health (trophic status) into three main categories: oligotrophic, mesotrophic, and eutrophic. The trophic status of a lake is determined by measuring the level of three basic water quality parameters: total phosphorus, chlorophyll-a, and secchi disk transparency. These parameters will be defined in the sections that follow. Oligotrophic lakes are characterized as having low levels of total phosphorus, and, as a consequence, low levels of chlorophyll-a and high transparencies. Eutrophic lakes have high levels of total phosphorus and chlorophyll-a, and, as a consequence, low transparencies. Mesotrophic lakes have moderate levels of all three of these water quality parameters. Based upon the results of the 2006 Adirondack Lakes Assessment Program, Lake Colby is considered to be a mesotrophic water body.

Four years of data is insufficient to detect water quality trends. In 2006, the alkalinity, conductivity, color, nitrate and Secchi disk transparency levels decreased as compared to 2005 levels. Conversely, the pH, total phosphorous and chlorophyll-a levels all increased as compared to levels in 2005. The lake was experiencing an algae bloom during May of 2006 sampling. The total phosphorous levels were elevated for 2006 and this led to more algae growth as shown by the increased chlorophyll-a levels and this led to decreased Secchi disk transparency readings for 2006. These results are presented graphically in Appendix A for the lake samples only.

pH

The pH level is a measure of acidity (concentration of hydrogen ions in water), reported in standard units on a logarithmic scale that ranges from 1 to 14. On the pH scale, 7 is neutral, lower values are more acidic, and higher numbers are more basic. In general, pH values between 6.0 and 8.0 are considered optimal for the maintenance of a healthy lake ecosystem. Many species of fish and amphibians have difficulty with growth and reproduction when pH levels fall below 5.5 standard units. Lake acidification status can be assessed from pH as follows:

- pH less than 5.0: Critical or Impaired
- pH between 5.0 and 6.0: Endangered or Threatened
- pH greater than 6.0: Satisfactory or Acceptable

The pH in the upper waters of Lake Colby ranged from 7.27 to 7.73 and averaged 7.43. Based solely on pH, Lake Colby’s acidity levels should be considered satisfactory.

Alkalinity

Alkalinity (acid neutralizing capacity) is a measure of the buffering capacity of water, and in lake ecosystems refers to the ability of a lake to absorb or withstand acidic
inputs. In the northeast, most lakes have low alkalini- ties, which mean they are sensitive to the effects of acidic precipitation. This is a particular concern during the spring when large amounts of low pH snowmelt runs into lakes with little to no contact with the soil’s natural buffering agents. Alkalinity is reported in milligrams per liter (mg/L) or microequivelents per liter (μeq/L). Typical summer concentrations of alkalinity in northeastern lakes are around 10 mg/L (200 μeq/L). Lake acidification status can be assessed from alkalinity as follows:

- Alkalinity less than 0 ppm: Acidified
- Alkalinity between 0 and 2 ppm: Extremely sensitive
- Alkalinity between 2 and 10 ppm: Moderately sensitive
- Alkalinity between 10 and 25 ppm: Low sensitivity
- Alkalinity greater than 25 ppm: Not sensitive

The alkalinity of the upper waters of Lake Colby ranged from 49.2 ppm to 52.2 ppm and averaged 51.0 ppm. These values indicate no sensitivity to acidification.

Calcium

Calcium is one of the buffering materials that occur naturally in the environment. However, it is often in short supply in Adirondack lakes and ponds, making these bodies of water susceptible to acidification by acid precipitation. Calcium concentrations provide information on the buffering capacity of that lake, and can assist in determining the timing and dosage for acid mitigation (liming) activities. Adirondack lakes containing less than 2.5 ppm of calcium are considered to be sensitive to acidification.

The calcium in Lake Colby was found to be 7.72 ppm when sampled in May of 2006.

Calcite Saturation Index

The Calcite Saturation Index (CSI) is another method that is used to determine the sensitivity of a lake to acidification. High CSI values are indicative of increasing sensitivity to acidic inputs. CSI is calculated using the following formula:

$$ CSI = -\log_{10} \frac{Ca}{40000} - \log_{10} \frac{Alk}{50000} - pH + 2 $$

Where
- Ca = Calcium level of water sample in ppm or mg/L
- Alk = Alkalinity of the water sample in ppm or mg/L
- pH = pH of the water sample in standard units

Lake sensitivity to acidic inputs is assessed from CSI as follows:

- CSI greater than 4: Very vulnerable to acidic inputs
- CSI between 3 & 4: Moderately vulnerable to acidic inputs
CSI values for Lake Colby were found to be 1.42 in May of 2006. This shows that Lake Colby has a very low vulnerability to further acidic inputs.

Total Phosphorus

Phosphorus is one of the three essential nutrients for life, and in northeastern lakes, it is often the controlling, or limiting, nutrient in lake productivity. Total phosphorus is a measure of all forms of phosphorus, both organic and inorganic. Total phosphorus concentrations are directly related to the trophic status (water quality conditions) of a lake. Excessive amounts of phosphorus can lead to algae blooms and a loss of dissolved oxygen within the lake. Surface water (epilimnion) concentrations of total phosphorus less than 10 ppb are associated with oligotrophic (clean, clear water) conditions. Concentrations greater than 25 ppb are associated with eutrophic (nutrient-rich) conditions.

The total phosphorus in the upper waters of Lake Colby ranged from 16 to 17 ppb and they averaged 16.3 ppb. This is indicative of mesotrophic conditions.

Chlorophyll-a

Chlorophyll-a is the green pigment in plants used for photosynthesis, and measuring it provides information on the amount of algae (microscopic plants) in lakes. Chlorophyll-a concentrations are also used to classify a lakes trophic status. Concentrations less than 2 ppb are associated with oligotrophic conditions and those greater than 8 ppb are associated with eutrophic conditions.

The chlorophyll-a concentrations in the upper waters of Lake Colby ranged from 5.87 ppb to 13.7 ppb and averaged 8.53 ppb. This is indicative of late mesotrophic conditions because the value of 13.7 ppb chlorophyll a found in May shows that there was an algae bloom going on at that time due to the lake just recently having turned over which made the results higher than normal.

Secchi Disk Transparency

Transparency is a measure of water clarity in lakes and ponds. It is determined by lowering a 20 cm black and white disk (Secchi) into a lake to the depth where it is no longer visible from the surface. This depth is then recorded in meters. Since algae are the main determinant of water clarity in non-stained, low turbidity (suspended silt) lakes, transparency also is used as an indicator of the trophic status of a body of water. Secchi disk transparencies greater than 4.6 meters (15.1 feet) are associated with oligotrophic conditions, while values less than 2 meters (6.6 feet) are associated with eutrophic conditions (DEC & FOLA, 1990).
Secchi disk transparency in Lake Colby ranged from 2.5 meters to 3.5 meters and averaged 3.17 meters. This value is indicative of mesotrophic conditions.

Nitrate

Nitrogen is another essential nutrient for life. Nitrate is an inorganic form of nitrogen that is naturally occurring in the environment. It is also a component of atmospheric pollution. Nitrogen concentrations are usually less than 1 ppm in most lakes. Elevated levels of nitrate concentration may be indicative of lake acidification or wastewater pollution.

The nitrate in the upper waters of Lake Colby ranged from 0.0 to 0.1 ppm. The average nitrate for Lake Colby was 0.07 ppm.

Chloride

Chloride is an anion that occurs naturally in surface waters, though typically in low concentrations. Background concentrations of chloride in Adirondack Lakes are usually less than 1 ppm. Chloride levels 10 ppm and higher is usually indicative of pollution and, if sustained, can alter the distribution and abundance of aquatic plant and animal species. The primary sources of additional chloride in Adirondack lakes are road salt (from winter road de-icing) and wastewater (usually from faulty septic systems). The most salt impacted waters in the Adirondacks usually have chloride concentrations of 100 ppm or less.

The chloride in the upper waters of Lake Colby was found to be 46 ppm in May of 2006. This level should raise concern as well as levels found in past years.

Conductivity

Conductivity is a measure of the ability of water to conduct electric current, and will increase as dissolved minerals build up within a body of water. As a result, conductivity is also an indirect measure of the number of ions in solution, mostly as inorganic substances. High conductivity values (greater than 50 \(\mu \text{ohms/cm} \)) may be indicative of pollution by road salt runoff or faulty septic systems. Conductivities may be naturally high in water that drains from bogs or marshes. Eutrophic lakes often have conductivities near 100 \(\mu \text{ohms/cm} \), but may not be characterized by pollution inputs. Clean, clear-water lakes in our region typically have conductivities up to 30 \(\mu \text{ohms/cm} \), but values less than 50 \(\mu \text{ohms/cm} \) are considered normal.

The conductivity in the upper waters of Lake Colby ranged from 189.8\(\mu \text{ohms/cm} \) to 225.0\(\mu \text{ohms/cm} \) and averaged 203.3\(\mu \text{ohms/cm} \). These levels raise concern and are most likely high due to the very high chloride levels.
Color

The color of water is affected by both dissolved materials (e.g., metallic ions, organic acids) and suspended materials (e.g., silt and plant pigments). Water samples are collected and compared to a set of standardized chloroplatinate solutions in order to assess the degree of coloration. The measurement of color is usually used in lake classification to describe the degree to which the water body is stained due to the accumulation of organic acids. The standard for drinking water color, as set by the United States Environmental Protection Agency (US EPA) using the platinum-cobalt method, is 15 Pt-Co. However, dystrophic lakes (heavily stained, often the color of tea) are common in this part of the country, and are usually found in areas with poorly drained soils and large amounts of coniferous vegetation (i.e., pines, spruce, hemlock). Dystrophic lakes usually have color values upwards of 75 Pt-Co.

Color can often be used as a possible index of organic acid content since higher amounts of total organic carbon (TOC) are usually found in colored waters. TOC is important because it can bond with aluminum in water, locking it up within the aquatic system and resulting in possible toxicity to fish (see Aluminum).

The color in the upper waters of Lake Colby ranged from 10 Pt-Co to 14 Pt-Co and averaged 11.3 Pt-Co.

Aluminum

Aluminum is one of the most abundant elements found within the earth’s crust. Acidic runoff (from rainwater and snowmelt) can leach aluminum out of the soil as it flows into streams and lakes. If a lake is acidic enough, aluminum may also be leached from the sediment at the bottom of it. Low concentrations of aluminum can be toxic to aquatic fauna in acidified water bodies, depending on the type of aluminum available, the amount of dissolved organic carbon available to bond with the aluminum, and the pH of the water. Aluminum can form thick mucus that has been shown to cause gill destruction in aquatic fauna (i.e., fish, insects) and, in cases of prolonged exposure, can cause mortality in native fish populations (Potter, 1982). Aluminum concentrations are reported as mg/L of total dissolved aluminum.

The aluminum in Lake Colby was found to be 0.000 ppm in May 2006.

Dissolved Oxygen

The dissolved oxygen in a lake is an extremely important parameter to measure. If dissolved oxygen decreases as we approach the bottom of a lake we know that there is a great amount of bacterial decay that is going on. This usually means that there is an abundance of nutrients, like phosphorous that have collected on the lake bottom. Oligotrophic lakes tend to have the same amount of dissolved oxygen from the surface waters to the lake bottom, thus showing very little bacterial decay. Eutrophic lakes tend to have so much decay that their bottom waters will have very little dissolved oxygen.
Cold-water fish need 6.0 ppm dissolved oxygen to thrive and reproduce. Warm water fish need 4.0 ppm oxygen.

The dissolved oxygen and temperature profiles for Lake Colby for 2006 were not measured due to lack of a site visit by AWI staff.

Summary

Lake Colby was a moderately productive mesotrophic lake during 2006. Based on the results of the 2006 Adirondack Lakes Assessment program, the acidity status of Lake Colby is considered to be satisfactory with no threat from further acidic inputs.

Four years of data is insufficient to detect water quality trends. In 2006, the alkalinity, conductivity, color, nitrate and Secchi disk transparency levels decreased as compared to 2005 levels. Conversely, the pH, total phosphorous and chlorophyll-a levels all increased as compared to levels in 2005. The lake was experiencing an algae bloom during May of 2006 sampling. The total phosphorous levels were elevated for 2006 and this led to more algae growth as shown by the increased chlorophyll a levels and this led to decreased Secchi disk transparency readings for 2006.

Literature Cited

New York State Department of Environmental Conservation & The Federation of Lake Associations, Inc.: Albany, New York.

Appendix A

Water Quality Data
<table>
<thead>
<tr>
<th></th>
<th>Site</th>
<th>Date</th>
<th>AWI</th>
<th>Vol</th>
<th>AWI</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Deep hole</td>
<td>8/7/2003</td>
<td>7.8700</td>
<td>52.4000</td>
<td>171.1000</td>
<td>10.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Deep hole</td>
<td>9/6/2003</td>
<td>7.2100</td>
<td>44.4000</td>
<td>240.0000</td>
<td>49.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Deep hole</td>
<td>10/8/2003</td>
<td>7.1600</td>
<td>26.0000</td>
<td>259.0000</td>
<td>10.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Std Dev</td>
<td>0.3963</td>
<td>13.5371</td>
<td>46.2504</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Brook</td>
<td>8/7/2003</td>
<td>7.2000</td>
<td>318.0000</td>
<td>1720.0000</td>
<td>1720.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Brook</td>
<td>10/8/2003</td>
<td>6.8900</td>
<td>98.0000</td>
<td>2120.0000</td>
<td>2120.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Site</th>
<th>Date</th>
<th>AWI</th>
<th>Vol</th>
<th>AWI</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Epilimnion</td>
<td>8/18/2004</td>
<td>7.7500</td>
<td>46.2000</td>
<td>234.0000</td>
<td>17.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Hypolimnion</td>
<td>8/18/2004</td>
<td>7.1300</td>
<td>54.0000</td>
<td>241.0000</td>
<td>45.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Brook</td>
<td>4/1/2004</td>
<td>7.1200</td>
<td>44.0000</td>
<td>337.0000</td>
<td>50.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Brook</td>
<td>4/19/2004</td>
<td>7.0000</td>
<td>50.0000</td>
<td>466.0000</td>
<td>50.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Brook</td>
<td>5/5/2004</td>
<td>7.2100</td>
<td>54.0000</td>
<td>497.0000</td>
<td>26.0000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Site</th>
<th>Date</th>
<th>AWI</th>
<th>Vol</th>
<th>AWI</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Deep hole</td>
<td>6/30/2005</td>
<td>7.5300</td>
<td>52.0000</td>
<td>220.0000</td>
<td>21.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Deep hole</td>
<td>7/30/2005</td>
<td>7.3700</td>
<td>55.6000</td>
<td>240.0000</td>
<td>11.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Dlp</td>
<td>11/8/2005</td>
<td>6.3900</td>
<td>54.0000</td>
<td>196.9000</td>
<td>50.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Std Dev</td>
<td>0.6172</td>
<td>1.8037</td>
<td>21.5686</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Brook</td>
<td>6/30/2005</td>
<td>6.9400</td>
<td>122.8000</td>
<td>430.0000</td>
<td>96.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Brook</td>
<td>7/30/2005</td>
<td>7.4200</td>
<td>148.4000</td>
<td>663.0000</td>
<td>68.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Brook</td>
<td>11/8/2005</td>
<td>6.3200</td>
<td>108.4000</td>
<td>631.0000</td>
<td>114.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Std Dev</td>
<td>0.5515</td>
<td>20.2596</td>
<td>126.3025</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Site</th>
<th>Date</th>
<th>AWI</th>
<th>Vol</th>
<th>AWI</th>
<th>Vol</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Deep hole</td>
<td>5/10/2005</td>
<td>7.2800</td>
<td>52.2000</td>
<td>225.0000</td>
<td>14.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Deep hole</td>
<td>7/19/2006</td>
<td>7.7300</td>
<td>51.6000</td>
<td>189.8000</td>
<td>10.0000</td>
</tr>
<tr>
<td>Lake Colby</td>
<td>Deep hole</td>
<td>8/26/2006</td>
<td>7.2700</td>
<td>49.2000</td>
<td>195.0000</td>
<td>10.0000</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Std Dev</td>
<td>0.2627</td>
<td>1.5675</td>
<td>19.0004</td>
</tr>
<tr>
<td>Date</td>
<td>Value1</td>
<td>Value2</td>
<td>Value3</td>
<td>Value4</td>
<td>Value5</td>
<td>Value6</td>
</tr>
<tr>
<td>------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>8/7/2003</td>
<td>2.5000</td>
<td>6.5000</td>
<td>0.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9/6/2003</td>
<td>1.4300</td>
<td>5.6000</td>
<td>0.2000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/8/2003</td>
<td>5.5100</td>
<td>0.5000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.1467</td>
<td>6.0500</td>
<td>0.2333</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std Dev</td>
<td>2.1155</td>
<td>0.6364</td>
<td>0.2517</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/7/2003</td>
<td>0.3000</td>
<td></td>
<td>469.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10/8/2003</td>
<td>1.5000</td>
<td></td>
<td>719.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/18/2004</td>
<td>2.9500</td>
<td>4.3000</td>
<td>0.0000</td>
<td>8.8700</td>
<td>63.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>8/18/2004</td>
<td>0.0000</td>
<td></td>
<td>9.2500</td>
<td>64.0000</td>
<td>0.0000</td>
<td>1.4725</td>
</tr>
<tr>
<td>4/1/2004</td>
<td>0.9000</td>
<td></td>
<td>112.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4/19/2004</td>
<td>0.6000</td>
<td></td>
<td>92.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/5/2004</td>
<td>0.3000</td>
<td></td>
<td>161.0000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6/30/2005</td>
<td>1.9700</td>
<td>5.0000</td>
<td>0.1000</td>
<td></td>
<td>47.0000</td>
<td></td>
</tr>
<tr>
<td>7/30/2005</td>
<td>3.0200</td>
<td>4.3000</td>
<td>0.1000</td>
<td></td>
<td>49.0000</td>
<td></td>
</tr>
<tr>
<td>11/8/2005</td>
<td>5.0220</td>
<td>0.2000</td>
<td></td>
<td></td>
<td>90.0000</td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>3.3373</td>
<td>4.6500</td>
<td>0.1333</td>
<td></td>
<td>62.0000</td>
<td></td>
</tr>
<tr>
<td>Std Dev</td>
<td>1.5505</td>
<td>0.4950</td>
<td>0.0577</td>
<td></td>
<td>24.2693</td>
<td></td>
</tr>
<tr>
<td>6/30/2005</td>
<td>5.4500</td>
<td>0.4000</td>
<td></td>
<td>93.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7/30/2005</td>
<td>6.1700</td>
<td>0.2000</td>
<td></td>
<td>206.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11/8/2005</td>
<td>23.0790</td>
<td>0.6000</td>
<td></td>
<td>177.0000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>11.5663</td>
<td>0.4000</td>
<td></td>
<td>158.6667</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std Dev</td>
<td>9.9768</td>
<td>0.2000</td>
<td></td>
<td>58.6884</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5/10/2006</td>
<td>13.7000</td>
<td>2.5000</td>
<td>0.0000</td>
<td>7.7200</td>
<td>46.0000</td>
<td>0.0000</td>
</tr>
<tr>
<td>7/15/2006</td>
<td>5.8700</td>
<td>3.5000</td>
<td>0.1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8/26/2006</td>
<td>6.0200</td>
<td>3.5000</td>
<td>0.1000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mean</td>
<td>8.5300</td>
<td>3.1667</td>
<td>0.0667</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Std Dev</td>
<td>4.4780</td>
<td>0.5774</td>
<td>0.0577</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Lake Colby

Dissolved Oxygen (ppm)

Depth (m)

Dissolved Oxygen (ppm)

- 2004
Lake Colby

Depth (m)

Temperature (°C)

- 2004